绝对零度是多少度,怎么推算出来的,绝对0度值是如何计算出来的

绝对零度可以用理想气体理论推导出来。根据盖-吕萨克定律,压强恒定时,降低温度,气体的体积会压缩,并且这种变化是线性的。测量一段温度范围内体积随温度变化的规律,并延长到体积为零的位置,此时的温度值就是最早对绝对零度的定义。更先进的定义要用到关于热机循环的知识,这里就不细说了。物理学中常用单位K(开尔文)计量温度,绝对零度为0K,0℃为273.15K。

目前尚没有方法可以实验上准确测出绝对零度的值。绝对零度是一个理论上的极限值,在接近绝对零度时,很多性质都会发生变化。比如,根据盖-吕萨克定律,保持恒定压强,降温至绝对零度,气体的体积会降为零。实际上这是不现实的,绝对零度附近,盖-吕萨克定律不再准确。再比如,开尔文认为绝对零度下粒子的能量为零(这其实也是如今很多人的认识),但这后来也被推翻。在接近绝对零度时,玻色子会全部占据最低能级形成“玻色-爱因斯坦凝聚”,而费米子会占据“费米能级”以下所有量子态,总之它们的能量都不为零。极低温下还有超导、超流等很多新奇的物态,这些都不能用经典物理的知识理解。

有很多种降温的方法可以接近绝对零度。凝聚态物理中,使用“稀释制冷机”等手段可以降温到mK(0.001K)的水平。专门研究极低温物理的冷原子物理中,使用激光、磁场等辅助,可以实现nK(0.000000001K)量级的温度。我在最后附上一张冷原子领域的经典图片,这是170nK温度下铷原子的玻色-爱因斯坦凝聚,该发现获得了2001年的诺贝尔物理学奖。想要深入了解这一问题,欢迎学习热力学和统计物理的相关知识。

玻色-爱因斯坦凝聚发生时的粒子速度分布图 左图:发生前;中图:发生后;右图:继续降温后

回答: 老张

编辑:yrLewis

绝对零度是多少度,怎么推算出来的,绝对0度值是如何计算出来的

绝对零度是如何算出来的?

绝对零度是通过复杂的测算得来的,并且也并非“绝对地”零度。

1、逼近技术温度纪录:

和外太空宇宙背景辐射的 3K 温度做比较,实现玻色-爱因斯坦凝聚的温度170*10^(-9)K 远小于 3K,可知在实验上要实现玻色-爱因斯坦凝聚是非常困难的。要制造出如此极低的温度环境,主要的技术是镭射(激光)冷却和蒸发冷却。

由德国、美国、奥地利等国科学家组成的一个国际科研小组在实验室内创造了仅仅比绝对零度高0.5纳开尔文的温度纪录,而此前的纪录是比绝对零度高3纳开。这是人类历史上首次达到绝对零度以上1纳开以内的极端低温。

这个科研小组在美国《科学》杂志上发表论文介绍说,他们是在利用磁阱技术实现铯原子的玻色-爱因斯坦凝聚态(BEC)的实验过程中创造这一纪录的。参与研究的科学家大卫·普里查德介绍说,将气体冷却到极端接近绝对零度的条件对于精确测量具有重要意义,他们的此次实验成果有助于制造更为精确的原子钟和更为精确地测定重力等。

玻色-爱因斯坦凝聚态是物质的一种奇特的状态,处于这种状态的大量原子的行为像单个粒子一样。这里的“凝聚”与日常生活中的凝聚不同,它表示原来不同状态的原子突然“凝聚”到同一状态。要实现物质的该状态一方面需要达到极低的温度,另一方面还要求原子体系处于气态。华裔物理学家朱棣文曾因发明了激光冷却和磁阱技术制冷法而与另两位科学家分享了1997年的诺贝尔物理学奖。

科学家说,他们希望利用新达到的最低温度发现一些物质的新现象,诸如在此低温下原子在同一物体表面的状态、在限定运动通道区域时的运动状态等。因发现了“碱金属原子稀薄气体的玻色-爱因斯坦凝聚”这一新的物质状态而获得了2001年诺贝尔物理学奖的德国科学家评价说,首次达到绝对零度以上1纳开以内的温度是人类历史上的一个里程碑。

慕尼黑路德维格·马克西米利安大学物理学家乌尔里奇·施奈德解释说,从技术上讲,人们能从一条温度曲线上读出一系列温度数,但这些数字表示的只是它所含的粒子处于某个能量状态的概率。通常,大部分粒子的能态处于平均或接近平均水平,只有少数粒子在更高能态上下。理论上,如果这种位置倒转,使多数粒子处于高能态而少数粒子在低能态,温度曲线也会反过来,温度将从正到负,低于绝对零度。2001年诺贝尔物理学奖获得者沃尔夫冈·克特勒也曾证明,在磁场系统中存在负绝对温度。

施奈德和同事用钾原子超冷量子气体实现了这种负绝对零度。他们用激光和磁场将单个原子保持晶格排列。在正温度下,原子之间的斥力使晶格结构保持稳定。然后他们迅速改变磁场,使原子变成相互吸引而不是排斥。施奈德说:“这种突然的转换,使原子还来不及反应,就从它们最稳定的状态,也就是最低能态突然跳到可能达到的最高能态。就像你正在过山谷,突然发现已在山峰。”

在正温度下,这种逆转是不稳定的,原子会向内坍塌。他们也同时调整势阱激光场,增强能量将原子稳定在原位。这样的结果是。这样一来,气体就实现了从高于绝对零度到低于绝对零度的转变,约在负十亿分之几开氏度。

这项研究已经被发表在很多自然科学杂志上,这是人类在物理学上的重大突破,许多科学家表示这将为发现新的物质——暗物质提供了一条路径。

2、1877年,玻尔兹曼发现了宏观的熵与体系的热力学几率的关系S=KlnQ,其中 K为 玻尔兹曼常数。1906年,能斯特提出当温度趋近于绝对零度 T→0 时,△S / O = 0 ,即“能斯特热原理”。普朗克在能斯特研究的基础上,利用统计理论指出,各种物质的完美晶体,在绝对零度时,熵为零(S 0 = 0 ),这就是热力学第三定律。

扩展资料:

1、最冷之地:

智利天文学家发现了宇宙最冷之地,这个宇宙最冷之地就叫做“回力棒星云”,那里的温度为零下272摄氏度,是目前所知自然界中最寒冷的地方,称为“宇宙冰盒子”。事实上,布莫让星云的温度仅比绝对零度(零下273.15℃)高将近1度。这个“热度”(因为实际上我们谈到的温度总是在绝对零度之上)是作为宇宙起源的大爆炸留存至今的热度,事实上,这是证明大爆炸理论最显著有效的证据之一。

2、真空能量:

在绝对零度下,任何能量都应消失。可就是在绝对零度下,依然有一种能量存在,这就是真空零点能。

真空零点能,因在绝对零度下发现粒子的振动而得名。这是量子真空中所蕴藏着的巨大本底能量。海森堡不确定性原理指出:不可能同时以较高的精确度得知一个粒子的位置和动量。因此,当温度降到绝对零度时粒子必定仍然在振动;否则,如果粒子完全停下来,那它的动量和位置就可以同时精确的测知,而这是违反测不准原理的。这种粒子在绝对零度时的振动(零点振动)所具有的能量就是零点能。

量子真空是没有任何实物粒子的物质状态,其场的总能量处于最低,这是一切物质运动及能量场的最初始状态,它的温度自然处于绝对零度。这样的状态具有无限变化的潜在能力。零点能就是由(量子真空中)虚粒子,不断产生的一对反粒子的出现和湮灭产生的。据推测,量子真空中,每立方厘米包含的能量密度有10^13焦耳。

从理论上看,真空能量以粒子的形态出现,并不断以微小的规模形成和消失。真空中充满着几乎各种波长的粒子,但卡西米尔认为,如果使两个不带电的金属薄盘紧紧靠在一起,较长的波长就会被排除出去。接着,金属盘外的其他波就会产生一种往往使它们相互聚拢的力,金属盘越靠近,两者之间的吸引力就越强。1996 年,物理学家首次对这种所谓的卡西米尔效应进行了测定。这是证明真空零点能存在的确凿证据。

参考资料来源:百度百科 - 绝对零度

参考资料来源:百度百科 - 热力学第三定律

绝对零度是多少度,怎么推算出来的,绝对0度值是如何计算出来的

绝对温度零度是怎么推导出来的?

一定质量的气体等压膨胀时,在常温下其V-t图线为一条不过坐标原点的直线(盖-吕萨克定律)。若实验测得这条图线,加以外推,找出图线与t轴的交点处的摄氏温度值,它就是使理想气体体积变为零的最低温度,即热力学温度(绝对温度)的零度。
绝对零度是一个「理论值」,而非一个实际已经观测到或达到的温度,也就是说,它是一个科学家根据实验所间接「推论」出来的数值;而到目前为止,以人类的科学技术,还达不到这样的低温。
物质的分子无时无刻不在剧烈地运动,也正是因为分子运动的结果,而使得温度上升,因此被称之为「热运动」;相对地,如果把温度不断地降低,就会使得分子的热运动愈来愈慢、愈来愈慢;那究竟要到什麼时候,物质分子才会完全静止不动呢?
绝对零度(也就是大约摄-273.15℃)正是科学家们推导出来的答案;它代表著在此温度之下,物质分子不再具有任何能量来进行热运动,也就是一切的分子都会停止活动。但后来的科学家发现,即使在绝对零度的低温下,分子运动却可能不会完全静止,不过,这已是量子力学的艰深范畴了!
冷冻后的原子温度到底是多少度,方法之一是先把雷射关掉。在朱棣文最初的实验里,原子冷冻后会在这个状态下维持约0.1毫秒(1ms =10-3 s),随后原子就在无动力的情况下离开观测区继续飞行。测量这个只受重力下飞行一段固定距离所需的时间,可以大约估计原子的温度。朱棣文量得的温度大约是 240μK,这大约等於钠原子速度为 30 cm/s的温度,跟理论上计算的都卜勒极限差不多,用都卜勒冷冻最低就只能达到这个温度了。
其他量测温度的方法还有很多,例如,让原子在重力场中落下,然后利用雷射测量它下落的曲线。 1988 年菲利普斯发现,如果把雷射频率调得比都卜勒冷冻极限理论所预测的最佳频率还低时,原子的温度竟然可以达到 40μK。比理论预测的都卜勒极限还低了六倍! 为了确定实验的正确性,菲利普斯自己就用了四种方法测量。当初有人怀疑是不是因为他用的雷射太强,以致於都卜勒冷冻的理论不适用了?不久朱棣文与柯恩唐努吉也做了更仔细的测量,确认了他的发现无误:与雷射强度无关。原来朱棣文当初测量温度所用的方法并不太准,测量的结果会受体积及原子在其内的分布影响。马上达利巴德、柯恩唐努吉还有朱棣文就找出了理论解释
现在我们知道,是因为得到这个极限所用的模型太过简单了:原来的理论只假设了简单的两个能阶,但是真正的钠原子基态能阶却还分很多的日曼次能阶(Zeeman sub-level),这些次能阶在没有外场时是分不出来的。雷射光会使原子在这些次能阶间转换,至於哪个能阶有多少原子,就要看雷射光的偏极化方向,不同偏极化的光会造成不同的分布。事实上原子能阶高低受雷射光偏极化方向的影响,也会改变,而且对各个日曼次能阶的改变量又不同。在光糖浆里,雷射光的偏极化方向不断的在变化,因此无论是每个能阶的位置或者在该能阶的原子数目,都随著雷射的偏极化方向一直在改变。另外还有一种称为偏极梯度冷冻效应 (polarization gradient colling effect) 的机制,在这个偏极化方向不断改变的环境中,也是导致如此低温的重要原因。这对静止的原子没有影响,因为各方面的改变平均说起来是零,但是运动中的原子由於对称性受到破坏就会受力。菲利普斯发现低温就是其中一个称为「薛西佛斯冷却」(Sisphus cooling) 机制的特例。(如下图)
薛西佛斯冷却:
这种冷却机制所以称为薛西佛斯冷却,是因为这有点像希腊神话中狡猾的国王薛西佛斯被罚在地狱里不断把石头推到山顶再滚下来一样。在这里原子跑到位能势的顶端后,又被雷射光推下来。原子损失动能就好像石头被推上山。
中央研究院物理所的低温物理实验室由陈洋元博士於1989年建立,至今已有十四年的历史。
由於很多的物理现象常被晶格振动能量(亦即声能)所掩盖,故唯有降低温度方能 从事多样尖端之研究,这也是诺贝尔物理奖有很多由低温物理研究人员得到的缘故。
本实验室之低温实验仪器设备多由国内自行研发完成,因此较易於从事自行设 计之尖端研究上。本实验室目前所能达到之最低温在50mK左右,可说是大部分时间都保持在全国最低温的一个地方。

上一篇: 女销售原来靠这样卖房(楼盘置业顾问提成大概多少)
下一篇: 小学数学单位换算表做作业考试都用得上么,小学数学单位换算表